Long-term drivers of persistence and colonization dynamics in spatially structured amphibian populations.
Mattia FalaschiSimone GiachelloElia Lo ParrinoMartina MuraroRaoul ManentiGentile Francesco FicetolaPublished in: Conservation biology : the journal of the Society for Conservation Biology (2021)
Many organisms live in networks of local populations connected by dispersing individuals, called spatially structured populations (SSPs), where the long-term persistence of the entire network is determined by the balance between 2 processes acting at the scale of local populations: extinction and colonization. When multiple threats act on an SSP, a comparison of the different factors determining local extinctions and colonizations is essential to plan sound conservation actions. We assessed the drivers of long-term population dynamics of multiple amphibian species at the regional scale. We used dynamic occupancy models within a Bayesian framework to identify the factors determining persistence and colonization of local populations. Because connectivity among patches is fundamental to SSPs dynamics, we considered 2 measures of connectivity acting on each focal patch: incidence of the focal species and incidence of invasive crayfish. We used meta-analysis to summarize the effect of different drivers at the community level. Persistence and colonization of local populations were jointly determined by factors acting at different scales. Persistence probability was positively related to the area and the permanence of wetlands, whereas it was negatively related to occurrence of fish. Colonization probability was highest in semipermanent wetlands and in sites with a high incidence of the focal species in nearby sites, whereas it showed a negative relationship with the incidence of invasive crayfish in the landscape. By analyzing long-term data on amphibian population dynamics, we found a strong effect of some classic features commonly used in SSP studies, such as patch area and focal species incidence. The presence of an invasive non-native species at the landscape scale emerged as one of the strongest drivers of colonization dynamics, suggesting that studies on SSPs should consider different connectivity measures more frequently, such as the incidence of predators, especially when dealing with biological invasions.