Login / Signup

Concentration-dependent physiological and transcriptional adaptations of wheat seedlings to ammonium.

Toyosi IjatoRomano Porras-MurilloPascal GanzUwe LudewigBenjamin Neuhäuser
Published in: Physiologia plantarum (2020)
Conventional wheat production utilizes fertilizers of various nitrogen forms. Sole ammonium nutrition has been shown to improve grain quality, despite the potential toxic effects of ammonium at elevated concentrations. We therefore investigated the responses of young seedlings of winter wheat to different nitrogen sources (NH4 NO3 = NN, NH4 Cl = NNH4 + and KNO3 = NNO3 - ). Growth with ammonium-nitrate was superior. However, an elevated concentration of sole ammonium caused severe toxicity symptoms and significant decreases in biomass accumulation. We addressed the molecular background of the ammonium uptake by gathering an overview of the ammonium transporter (AMT) of wheat (Triticum aestivum) and characterized the putative high-affinity TaAMT1 transporters. TaAMT1;1 and TaAMT1;2 were both active in yeast and Xenopus laevis oocytes and showed saturating high-affinity ammonium transport characteristics. Interestingly, nitrogen starvation, as well as ammonium resupply to starved seedlings triggered an increase in the expression of the TaAMT1s. The presence of nitrate seamlessly repressed their expression. We conclude that wheat showed the ability to respond robustly to sole ammonium supply by adopting distinct physiological and transcriptional responses.
Keyphrases
  • ionic liquid
  • gene expression
  • poor prognosis
  • transcription factor
  • binding protein
  • early onset
  • mass spectrometry
  • climate change
  • wastewater treatment
  • heat stress