Mechanisms to reduce the cytotoxicity of pharmacological nicotinamide concentrations in the pathogenic fungus Candida albicans.
Rahul GhugariSarah TsaoMark S SchmidtÉric BonneilCharles BrennerAlain VerreaultPublished in: The FEBS journal (2020)
Candida albicans is a pathogenic fungus that causes systemic infections and mortality in immunosuppressed individuals. We previously showed that deacetylation of histone H3 lysine 56 by Hst3 is essential for C. albicans viability. Hst3 is a fungal-specific NAD+ -dependent protein deacetylase of the sirtuin family. In vivo, supraphysiological concentrations of nicotinamide (NAM) are required for Hst3 inhibition and cytotoxicity. This underscores the importance of identifying mechanisms by which C. albicans can modulate intracellular NAM concentrations. For the first time in a pathogenic fungus, we combine genetics, heavy isotope labeling, and targeted quantitative metabolomics to identify genes, pathways, and mechanisms by which C. albicans can reduce the cytotoxicity of high NAM concentrations. We discovered three distinct fates for supraphysiological NAM concentrations. First, upon transient exposure to NAM, high intracellular NAM concentrations rapidly return near the physiological levels observed in cells that are not exposed to NAM. Second, during the first step of a fungal-specific NAM salvage pathway, NAM is converted into nicotinic acid, a metabolite that cannot inhibit the sirtuin Hst3. Third, we provide evidence that NAM enters the NAD+ metabolome through a NAM exchange reaction that contributes to NAM-mediated inhibition of sirtuins. However, in contrast to the other fates of NAM, the NAM exchange reaction cannot cause a net decrease in the intracellular concentration of NAM. Therefore, this reaction cannot enhance resistance to NAM. In summary, we demonstrate that C. albicans possesses at least two mechanisms to attenuate the cytotoxicity of pharmacological NAM concentrations. It seems likely that those two mechanisms of resistance to cytotoxic NAM concentrations are conserved in many other pathogenic fungi.
Keyphrases
- candida albicans
- magnetic resonance imaging
- type diabetes
- computed tomography
- gene expression
- cell proliferation
- reactive oxygen species
- induced apoptosis
- genome wide
- small molecule
- staphylococcus aureus
- pseudomonas aeruginosa
- signaling pathway
- cancer therapy
- subarachnoid hemorrhage
- blood brain barrier
- cerebral ischemia