TDP-43 and tau concurrence in the entorhinal subfields in primary age-related tauopathy and preclinical Alzheimer's disease.
Josué Llamas RodríguezJan OltmerMichael MarshallSamantha ChampionMatthew P FroschJean C AugustinackPublished in: Brain pathology (Zurich, Switzerland) (2023)
Phosphorylated tau (p-tau) pathology correlates strongly with cognitive decline and is a pathological hallmark of Alzheimer's Disease (AD). In recent years, phosphorylated transactive response DNA-binding protein (pTDP-43) has emerged as a common comorbidity, found in up to 70% of all AD cases (Josephs et al., Acta Neuropathol, 131(4), 571-585; Josephs, Whitwell, et al., Acta Neuropathol, 127(6), 811-824). Current staging schemes for pTDP-43 in AD and primary age-related tauopathy (PART) track its progression throughout the brain, but the distribution of pTDP-43 within the entorhinal cortex (EC) at the earliest stages has not been studied. Moreover, the exact nature of p-tau and pTDP-43 co-localization is debated. We investigated the selective vulnerability of the entorhinal subfields to phosphorylated pTDP-43 pathology in preclinical AD and PART postmortem tissue. Within the EC, posterior-lateral subfields showed the highest semi-quantitative pTDP-43 density scores, while the anterior-medial subfields had the lowest. On the rostrocaudal axis, pTDP-43 scores were higher posteriorly than anteriorly (p < 0.010), peaking at the posterior-most level (p < 0.050). Further, we showed the relationship between pTDP-43 and p-tau in these regions at pathology-positive but clinically silent stages. P-tau and pTDP-43 presented a similar pattern of affected subregions (p < 0.0001) but differed in density magnitude (p < 0.0001). P-tau burden was consistently higher than pTDP-43 at every anterior-posterior level and in most EC subfields. These findings highlight pTDP-43 burden heterogeneity within the EC and the posterior-lateral subfields as the most vulnerable regions within stage II of the current pTDP-43 staging schemes for AD and PART. The EC is a point of convergence for p-tau and pTDP-43 and identifying its most vulnerable neuronal populations will prove key for early diagnosis and disease intervention.