Login / Signup

Possible impact of neutrophils on immune responses during early pregnancy in ruminants.

Mariani Farias FiorenzaCarolina Dos Santos AmaralAdriana Raquel de Almeida da AnunciaçãoValério Valdetar Marques PortelaMohammed Ali MareyAkio MiyamotoAlfredo Quites Antoniazzi
Published in: Animal reproduction (2021)
The interaction between early embryo and maternal immune system for the establishment of pregnancy is the focus of several studies; however, it remains unclear. The maternal immune response needs to keep a balance between avoiding any damage to the conceptus and maintaining its function in combating microbes as well. When conceptus-maternal crosstalk cannot achieve this balance, pregnancy losses might occur. Intercommunication between mother and conceptus is fundamental during early pregnancy to dictate the outcome of pregnancy. In ruminants, the embryo reacts with the maternal system mainly via interferon tau (IFNT) release. IFNT can act locally on the embryo and endometrial cells and systemically in several tissues and cells to regulate their response via the expression of interferon-stimulated genes (ISGs). Also, IFNT can induce the expression of inflammatory-related genes in immune cells. Day 7 embryo induces a shift in the maternal immune response towards anti-inflammatory (Th2) immune responses. During maternal recognition of pregnancy, peripheral mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs) express markers that configure an anti-inflammatory response. However, PMNs response is more sensitive to the effects of IFNT. PMNs are more likely to express interferon-stimulated genes (ISGs), transforming growth factor-beta (TGFB), interleukin 10 (IL10), and arginase-1 (ARG1), configuring one of the most rapid immune responses to early pregnancy. This review focus on the local and peripheral immune responses during early pregnancy in ruminants, mainly the PMNs function in the immune system.
Keyphrases