Amyotrophic Lateral Sclerosis-Associated Mutants of SOD1 Perturb mRNA Splicing through Aberrant Interactions with SRSF2.
Xingyuan ChenZhongwen CaoYinsheng WangPublished in: Analytical chemistry (2024)
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results in the degeneration of neurons in the brain and spinal cord. Although a substantial number of studies have been conducted, much remains to be learned about the cellular mechanisms underlying ALS. In this study, we employed an engineered ascorbate peroxidase (APEX)-based proximity biotinylation, together with affinity pull-down of the ensuing biotinylated peptides, to investigate the proximity proteomes of human SOD1 and its two ALS-linked mutants, G85R and G93A. We were able to identify 25 common biotinylated peptides with preferential enrichment in the proximity proteomes of SOD1 G85R and SOD1 G93A over wild-type SOD1. Our coimmunoprecipitation followed by Western blot analyses revealed that one of these proteins, SRSF2, binds more strongly with the two SOD1 mutants than its wild-type counterpart. We also observed aberrant splicing of mRNAs in cells with ectopic expression of the two SOD1 mutants relative to cells expressing the wild-type protein. In addition, the aberrations in splicing elicited by the SOD1 variants were markedly attenuated upon knockdown of SRSF2. Collectively, we uncovered that ALS-liked SOD1 G85R and SOD1 G93A mutants interact more strongly with SRSF2, where the aberrant interactions perturbed mRNA splicing. Thus, our work offered novel mechanistic insights into the contributions of the ALS-linked SOD1 mutants to disease etiology.
Keyphrases