Regulation of the P53 tumor suppressor gene and the Mcl-2 oncogene expression by an active herbal component delivered through a smart thermo-pH-sensitive PLGA carrier to improve Osteosarcoma treatment.
Parinaz AkbariMohammad TaebpourMilad AkhlaghiShaimaa Hamid HasanShayesteh ShahriyariMahdieh ParsaeianBibi Fatemeh HaghirosadatAbbas RahdarSadanand PandeyPublished in: Medical oncology (Northwood, London, England) (2024)
Osteosarcoma (OS), a lethal malignancy, has witnessed an escalating incidence rate. Contemporary therapeutic strategies for this cancer have proven to be inadequate, primarily due to their extensive side effects and the lack of specificity in targeting the molecular pathways implicated in this disease. Consequently, this project is aimed to manufacture and characterize Poly (Lactic-co-glycolic acid) embodying curcumin, a phytocompound devoid of adverse effects which not only exerts an anti-neoplastic influence but also significantly modulates the genetic pathways associated with this malignancy. In this investigation, multiple formulations of PLGA-Cur were synthesized, and the choice of optimal formula was made considering the efficiency of nanoparticle encapsulation and the drug dispersion rate from synthesized PLGA. The selected formulation's physical and chemical attributes, such as its dimension, polydispersity index of the formulation, surface electrical charge, physical-spatial structure, and stability, were examined using methods, including Dynamic light scattering (DLS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and spectrophotometry. Subsequently, the absence of interaction between the drug and the system was assessed using Fourier Transform Infrared Spectroscopy (FT-IR), and cellular uptake was evaluated using fluorescence microscopy. The smart system's responsiveness to environmental stimuli was determined using the dialysis bag method and its anti-tumor properties were investigated on the SAOS-2 cell line. Finally, to evaluate the system's genetic impact on bone cancer, the molecular quantification of the P53 tumor suppressor gene and the oncogene MCL-2 was analyzed using real-time PCR and their protein expression levels were also examined. The PLGAs synthesized in this study exhibited an encapsulation rate of 91.5 ± 1.16% and a maximum release rate of 71 ± 1%, which were responsive to various stimuli. The size of the PLGAs was 12.5 ± 321.2 nm, with an electric charge of -38.9 ± 2.6 mV and a PDI of 0.107, indicating suitable morphology and stability. Furthermore, both the system and the drug retained their natural properties after inoculation. The system was readily absorbed by cancer cells and effectively exerted its anti-cancer properties. Notably, the system had a significant impact on the mentioned genes' expression. The produced nanosystem, possessing optimal physicochemical properties, has the potential to enhance the anti-cancer efficacy of curcumin. This is achieved by altering molecular and genetic pathways within cancer cells, thereby positioning it as a viable adjunctive treatment modality and also synthesizing of this herbal base drug system consider as a completely novel method for cancer therapy that can efficiently modulate genetical pathways involved.
Keyphrases
- drug delivery
- atomic force microscopy
- cancer therapy
- single molecule
- genome wide
- electron microscopy
- high speed
- copy number
- papillary thyroid
- poor prognosis
- physical activity
- real time pcr
- dna methylation
- adverse drug
- mental health
- bone regeneration
- squamous cell
- risk factors
- squamous cell carcinoma
- drug induced
- high throughput
- quality improvement
- gene expression
- combination therapy
- replacement therapy
- bone loss
- solar cells
- genome wide analysis
- decision making