Login / Signup

Aqueous Sol-Gel Synthesis and Shaping of Covalent Organic Frameworks.

Fan HuZeyou HuYufei LiuKam Michael Chiu TamRongran LiangQiujian XieZhiwen FanChunyue PanJuntao TangGui-Peng YuWei Zhang
Published in: Journal of the American Chemical Society (2023)
The intrinsic fragility and insoluble nature of covalent organic frameworks (COFs) have strongly impeded their processability for practical applications. Herein, an aqueous-based sol-gel synthetic strategy is reported for the synthesis and shaping of COFs with task-specific applications that satisfy the principles of green chemistry for gram-scale production of crystalline materials. Our successful approach involves three pivotal aspects: the "prodrug mimic" design of water-soluble monomers, the utilization of hydrolyzable bonds, and the manipulation of reaction kinetics. The generality of the method is demonstrated by the successful preparation of representative high-surface area two-dimensional (2D) COFs with several commonly used amines. By virtue of this strategy, a COF colloidal dispersion is achieved and can be formulated into processable fluids, structured films, and COF monoliths. Remarkably, the obtained lightweight (∼0.020 g cm -3 ) and robust aerogels displayed outstanding adsorption capacity (exceeding 57 times its own weight) toward a variety of organic solvents and exhibited superior thermal insulating properties compared to the widely used sponge and cotton. This work demonstrates a versatile strategy for the synthesis and shaping of processable COF materials in water that will contribute to the development of COF monoliths for advanced applications.
Keyphrases