Transparent and Flexible Amphiphobic Coatings with Excellent Fold Resistance via Solvent-Free Coating and Photocuring of Fluorinated Liquid Nitrile-Butadiene Rubber.
Changou PanYibo SongPeng LiuPublished in: ACS applied materials & interfaces (2021)
Amphiphobic surfaces have been developed for various applications. However, the harsh construction conditions and multistep processes limit their practical application. Especially for those with a particular surface roughness and morphology, the amphiphobic property might provide a slight deformation. Here, a facile large-area construction of transparent and flexible amphiphobic coatings with excellent fold resistance has been established by simple casting of the fluorinated liquid nitrile-butadiene rubber (F-LNBR) followed by solvent-free photocuring. It was found that the fluorocarbon groups could concentrate onto the coating surface during the UV-induced photocuring. With a certain coating amount, a stable oleophobic coating was achieved with static contact angles of about 95° and 111° for nonpolar oil (n-hexadecane) and polar oil (diiodomethane). Most importantly, the static contact angles of water and diiodomethane of the amphiphobic coatings on the iron sheet increased after bending and remained around 131° and 120° after being completely folded in half for 100 cycles because the inner fluorocarbon groups could be squeezed out from the flexible cross-linked rubber matrix as a reservoir. Such features indicated the promising self-cleaning and surface protection of the proposed transparent and flexible amphiphobic coatings for deformable substrates.