Site-Selective Modification of Proteins with Oxetanes.
Omar BoutureiraNuria Martínez-SáezKevin M BrindleAndré A NevesFrancisco CorzanaGonçalo J L BernardesPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2017)
Oxetanes are four-membered ring oxygen heterocycles that are advantageously used in medicinal chemistry as modulators of physicochemical properties of small molecules. Herein, we present a simple method for the incorporation of oxetanes into proteins through chemoselective alkylation of cysteine. We demonstrate a broad substrate scope by reacting proteins used as apoptotic markers and in drug formulation, and a therapeutic antibody with a series of 3-oxetane bromides, enabling the identification of novel handles (S-to-S/N rigid, non-aromatic, and soluble linker) and reactivity modes (temporary cysteine protecting group), while maintaining their intrinsic activity. The possibility to conjugate oxetane motifs into full-length proteins has potential to identify novel drug candidates as the next-generation of peptide/protein therapeutics with improved physicochemical and biological properties.