Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method.
Hongjun LiuZhongqing SuHan ZhangMingxi DengNing HuXiaoyang BiPublished in: Sensors (Basel, Switzerland) (2021)
This study experimentally and numerically investigated the nonlinear behavior of the resonant bulk waves generated by the two-way collinear mixing method in 5052 aluminum alloy with micro-crack damage. When the primary longitudinal and transverse waves mixed in the micro-crack damage region, numerical and experimental results both verified the generation of resonant waves if the resonant condition ωL/ωT=2κ/(κ-1) was satisfied. Meanwhile, we found that the acoustic nonlinearity parameter (ANP) increases monotonously with increases in micro-crack density, the size of the micro-crack region, the frequency of resonant waves and friction coefficient of micro-crack surfaces. Furthermore, the micro-crack damage in a specimen generated by low-temperature fatigue experiment was employed. It was found that the micro-crack damage region can be located by scanning the specimen based on the two-way collinear mixing method.