Effect of Hepatic Organic Anion-Transporting Polypeptide 1B Inhibition and Chronic Kidney Disease on the Pharmacokinetics of a Liver-Targeted Glucokinase Activator: A Model-Based Evaluation.
Arthur BergmanYi-An BiSumathy MathialaganJohn LitchfieldDavid J KazieradJeffrey A PfefferkornManthena V S VarmaPublished in: Clinical pharmacology and therapeutics (2019)
PF-04991532 ((S)-6-(3-Cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl) propanamido) nicotinic acid) is a glucokinase activator designed to achieve hepato-selectivity via organic anion-transporting polypeptides (OATP)s, so as to minimize systemic hypoglycemic effects. This study investigated the effect of OATP1B1/1B3 inhibition and renal impairment on PF-04991532 oral pharmacokinetics. Cyclosporine (600 mg single dose) increased mean area under the plasma curve (AUC) of PF-04991532 by approximately threefold in healthy subjects. In a renal impairment study, PF-04991532 AUC values were ~ 2.3-fold greater in subjects with mild, moderate, and severe kidney dysfunction, compared with healthy subjects. Physiologically-based pharmacokinetic (PBPK) model parameterizing hepatic and renal transporter-mediated disposition based on in vitro inputs, and verified using first-in-human data, indicated the key role of OATP-mediated hepatic uptake in the systematic and target-tissue exposure of PF-04991532. Mechanistic evaluation of the clinical data suggest reduced hepatic OATPs (~ 35%) and renal organic anion transporter (OAT)3 (80-90%) function with renal impairment. This study illustrates the adequacy and utility of the PBPK approach in assessing the impact of drug interactions and kidney dysfunction on transporter-mediated disposition.