LncRNA metastasis-associated lung adenocarcinoma transcript-1 promotes osteogenic differentiation of bone marrow stem cells and inhibits osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis.
Xiangxin LiPublished in: Journal of tissue engineering and regenerative medicine (2022)
Osteoporosis is defined as a skeletal disorder characterized by impairment in bone strength. The potential application of lncRNAs as therapeutic targets for osteoporosis has been unveiled. This study investigated the regulatory mechanism of lncRNA MALAT1 in the differentiation of bone marrow stem cells (BMSCs) and macrophages (Mø) in osteoporosis. MALAT1 expression in peripheral blood of elderly osteoporosis patients and healthy volunteers was detected. BMSCs and mononuclear Mø were isolated and cultured. Osteogenic differentiation of BMSCs and osteoclastic differentiation of Mø were induced. BMSCs and Mø were transfected with si-MALAT1, miR-124-3p mimics, miR-124-3p inhibitor, or pcDNA IGF2BP1, followed by detection of cell differentiation. The target microRNAs (miRs) and downstream genes and signaling pathways of MALAT1 were examined. The ovariectomy-induced mouse model of osteoporosis was established, and the mice were injected with pcDNA-MALAT1. MALAT1 was downregulated in osteoporosis patients, increased in BMSCs after osteogenic differentiation, and diminished in Mø after osteoclastic differentiation. Downregulation of MALAT1 repressed osteogenic differentiation of BMSCs and facilitated osteoclastic differentiation of Mø. MALAT1 upregulated IGF2BP1 expression by competitively binding to miR-124-3p. miR-124-3p silencing reversed the effect of si-MALAT1 on BMSCs and Mø differentiation, and IGF2BP1 upregulation averted the effect of overexpressed-miR-124-3p by activating the Wnt/β-catenin pathway. Upregulation of MALAT1 activated the Wnt/β-catenin pathway and attenuated bone injury in mice. In conclusion, lncRNA MALAT1 promoted the osteogenic differentiation of BMSCs and inhibited osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis.
Keyphrases
- bone mineral density
- stem cells
- postmenopausal women
- cell proliferation
- bone marrow
- end stage renal disease
- signaling pathway
- poor prognosis
- pi k akt
- peripheral blood
- mouse model
- binding protein
- mesenchymal stem cells
- chronic kidney disease
- ejection fraction
- body composition
- long non coding rna
- newly diagnosed
- peritoneal dialysis
- prognostic factors
- growth hormone
- transcription factor
- genome wide
- dna methylation
- metabolic syndrome
- risk assessment
- skeletal muscle
- diabetic rats
- endothelial cells
- soft tissue
- ionic liquid
- human health
- quantum dots
- sensitive detection