Login / Signup

New insights into the anatomo-functional architecture of the right sagittal stratum and its surrounding pathways: an axonal electrostimulation mapping study.

David Hassanein BerroGuillaume HerbetHugues Duffau
Published in: Brain structure & function (2021)
The sagittal stratum (SS) is a large sheet-like structure where major axonal fiber tracts cross, though its anatomical delineations are still debated. Here we investigated the poorly studied anatomo-functional organization of the right SS using direct electrical stimulation (DES) in patients undergoing wide-awake surgery for a cerebral glioma. Seventeen patients were included. There were six males, the mean age was 38 years old. One patient underwent surgery twice. Fourteen patients were right-handed and one was ambidextrous. Behavior tasks were used to monitor online the patients' functions during DES, including visual and somesthetic processes, semantics, language, spatial and social cognition. Beyond the cortical DES, the mapping of axonal pathways evoked various functional responses. At the level of the core of the right SS, there were visual disturbances, visual hemi-agnosia, semantic paraphasia, left spatial neglect, confusion and comprehension difficulties, anomia, and mentalizing disturbances. At the level of the surrounding axonal pathways, there were left spatial neglect, anomia, vertigo, dysesthesia, and hearing disturbances. Our functionally defined three-dimensional map indicates that this complex region has a multilayered functional architecture, and supports an organization founded on two anatomical systems: a core system formed by the optic radiations, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus, and a peripheral one composed of surrounding or intersecting white matter tracts, including the superior longitudinal fasciculus/arcuate fasciculus, thalamocortical radiations, auditory radiations, and parieto-insular vestibular system. These results should prompt neurosurgeons to achieve awake DES mapping within the right SS because of the likelihood of causing multiple and irreversible structural disconnections.
Keyphrases