Login / Signup

Postconditioning with Irisin Attenuates Lung Ischemia/Reperfusion Injury by Suppressing Ferroptosis via Induction of the Nrf2/HO-1 Signal Axis.

Yun WangZhe DongZongze ZhangYanlin WangKun YangXinyi Li
Published in: Oxidative medicine and cellular longevity (2022)
Iron-dependent lipid peroxidation causes ferroptosis. This study was aimed at verifying that irisin postconditioning can inhibit ferroptosis and minimize lung ischemia/reperfusion (I/R) damage via activating the Nrf2/HO-1 signal axis. We constructed a murine model of I/R lung damage. At the onset of reperfusion, irisin, ferroptosis inhibitor ferrostatin-1, and ferroptosis inducer Fe-citrate were all administered. We discovered that irisin could reduce lung I/R injury, consistent with ferrostatin-1's action. Furthermore, irisin suppressed ferroptosis in lung I/R damage, as evidenced by lower ROS, MDA, and Fe 2+ , as well as alterations in critical protein expression (GPX4 and ACSL4). However, Fe-citrate abolished the protective effects of irisin. Transcriptome research found that irisin increased the mRNA levels of Nrf2 and HO-1. Thus, we used siRNA to investigate the role of the Nrf2/HO-1 axis in irisin-mediated protection against hypoxia/reoxygenation (H/R) damage in MLE-12 cells. Irisin consistently reduced ferroptosis and improved mitochondrial dysfunction caused by H/R. Irisin's cytoprotective function was eliminated when Nrf2 was silenced. As a result, irisin postconditioning may protect against lung I/R damage by suppressing ferroptosis via the Nrf2/HO-1 signaling axis.
Keyphrases