Login / Signup

Deep Sequencing of a Systematic Peptide Library Reveals Conformationally-Constrained Protein Interface Peptides that Disrupt a Protein-Protein Interaction.

David M BoragineWanzhi HuangLynn H SuTimothy G Palzkill
Published in: Chembiochem : a European journal of chemical biology (2021)
Disrupting protein-protein interactions is difficult due to the large and flat interaction surfaces of the binding partners. The BLIP and BLIP-II proteins are unrelated in sequence and structure and yet each potently inhibit β-lactamases. High-throughput oligonucleotide synthesis was used to construct a 12,470-member library containing overlapping linear and cyclic peptides ranging in size from 6 to 21 amino acids that scan through the sequences of BLIP and BLIP-II. Phage display affinity selections and deep sequencing revealed that, despite the differences in interaction surfaces with β-lactamases, rapid enrichment of consensus peptide regions originating from both BLIP and BLIP-II contact residues in the binding interface occurred. BLIP and BLIP-II peptides that were enriched by affinity selection were shown to bind β-lactamases and disrupt the BLIP/β-lactamase interaction. The results suggest that peptides that bind at and disrupt PPI interfaces can be identified through systematic peptide library construction, affinity selection, and deep sequencing.
Keyphrases