Bayesian meta-analysis of penetrance for cancer risk.
Thanthirige Lakshika M RuberuDanielle BraunGiovanni ParmigianiSwati BiswasPublished in: Biometrics (2024)
Multi-gene panel testing allows many cancer susceptibility genes to be tested quickly at a lower cost making such testing accessible to a broader population. Thus, more patients carrying pathogenic germline mutations in various cancer-susceptibility genes are being identified. This creates a great opportunity, as well as an urgent need, to counsel these patients about appropriate risk-reducing management strategies. Counseling hinges on accurate estimates of age-specific risks of developing various cancers associated with mutations in a specific gene, ie, penetrance estimation. We propose a meta-analysis approach based on a Bayesian hierarchical random-effects model to obtain penetrance estimates by integrating studies reporting different types of risk measures (eg, penetrance, relative risk, odds ratio) while accounting for the associated uncertainties. After estimating posterior distributions of the parameters via a Markov chain Monte Carlo algorithm, we estimate penetrance and credible intervals. We investigate the proposed method and compare with an existing approach via simulations based on studies reporting risks for two moderate-risk breast cancer susceptibility genes, ATM and PALB2. Our proposed method is far superior in terms of coverage probability of credible intervals and mean square error of estimates. Finally, we apply our method to estimate the penetrance of breast cancer among carriers of pathogenic mutations in the ATM gene.
Keyphrases
- genome wide
- genome wide identification
- end stage renal disease
- monte carlo
- systematic review
- ejection fraction
- chronic kidney disease
- newly diagnosed
- dna repair
- dna damage
- copy number
- peritoneal dialysis
- papillary thyroid
- oxidative stress
- case control
- squamous cell carcinoma
- patient reported outcomes
- transcription factor
- mass spectrometry
- high resolution
- randomized controlled trial
- gene expression
- men who have sex with men
- human immunodeficiency virus
- hiv infected
- smoking cessation
- deep learning
- risk assessment
- bioinformatics analysis
- childhood cancer
- hiv testing