Confining the Growth of AgNPs onto Epigallocatechin Gallate-Decorated Zein Nanoparticles for Constructing Potent Protein-Based Antibacterial Nanocomposites.
Like WangXiaonan HuangXiaoxuan CaoFuzhen ZhouBo LiuShuheng WeiXia LiuXiaoquan YangShou-Wei YinPublished in: Journal of agricultural and food chemistry (2024)
Sliver nanoparticles (AgNPs) have attracted tremendous interest as an alternative to commercially available antibiotics due to their low microbial resistance and broad-spectrum antimicrobial activity. However, AgNPs are highly reactive and unstable and are susceptible to fast oxidation. Synthesizing stable and efficient AgNPs using green chemistry principles remains a major challenge. To address this issue, we establish a facile route to form AgNP-doped zein nanoparticle core-satellite superstructures with ultralow minimum bactericidal concentration (MBC). In brief, polyphenol surface-functionalization of zein nanoparticles was performed, and the epigallocatechin gallate (EGCG) layer on zein nanoparticles served as a reducing-cum-stabilizing agent. We used EGCG-decorated zein nanoparticles (ZE) as a template to direct the nucleation and growth of AgNPs to develop metallized hybrid nanoparticles (ZE-Ag). The highly monodispersed core-satellite nanoparticles (∼150 nm) decorated with ∼4.9 nm AgNPs were synthesized successfully. The spatial restriction of EGCG by zein nanoparticles confined the nucleation and growth of AgNPs only on the surface of the particles, which prevented the formation of entangled clusters of polyphenols and AgNPs and concomitantly inhibited the coalescence and oxidation of AgNPs. Thus, this strategy improved the effective specific surface area of AgNPs, and as a result, ZE-Ag efficiently killed the indicator bacteria, Escherichia coli ( E. coli ) and Methicillin-resistant Staphylococcus aureus (MRSA) after 20 min of incubation, with MBCs of 2 and 4 μg/mL, respectively. This situation indicated that as-prepared core-satellite nanoparticles possessed potent short-term sterilization capability. Moreover, the simulated wound infection model also confirmed the promising application of ZE-Ag as an efficient antimicrobial composite. This work provides new insights into the synthesis and emerging application of AgNPs in food preservation, packaging, biomedicine, and catalysis.
Keyphrases
- silver nanoparticles
- quantum dots
- escherichia coli
- methicillin resistant staphylococcus aureus
- visible light
- highly efficient
- reduced graphene oxide
- photodynamic therapy
- walled carbon nanotubes
- small molecule
- wound healing
- binding protein
- protein protein
- metal organic framework
- simultaneous determination
- electron transfer