A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice.
Ayako Nishizawa-YokoiTomas CermakTomoki HoshinoKazuhiko SugimotoHiroaki SaikaAkiko MoriKeishi OsakabeMasao HamadaYuichi KatayoseColby G StarkerDaniel F VoytasSeiichi TokiPublished in: Plant physiology (2015)
We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing.
Keyphrases
- wild type
- crispr cas
- induced apoptosis
- high glucose
- diabetic rats
- copy number
- oxidative stress
- genome editing
- cell cycle arrest
- early onset
- drug induced
- single cell
- genome wide
- mitochondrial dna
- single molecule
- circulating tumor
- cell free
- transcription factor
- signaling pathway
- regulatory t cells
- endoplasmic reticulum stress
- cell proliferation
- gene expression
- cell death
- data analysis
- pi k akt