Login / Signup

Characterization and identification of long-chain hydrocarbon-degrading bacterial communities in long-term chronically polluted soil in Ogoniland: an integrated approach using culture-dependent and independent methods.

Amara Ukamaka OkoyeRamganesh SelvarajanChioma Blaise ChikereGideon Chijioke OkpokwasiliKevin Mearns
Published in: Environmental science and pollution research international (2024)
Escalating oil consumption has resulted in an increase in accidental spills of petroleum hydrocarbons, causing severe environmental degradation, notably in vulnerable regions like the Niger Delta. Complex mixture of these hydrocarbons particularly long-chain alkanes presents unique challenges in restoration of polluted environment due to their chemical properties. This study aimed to investigate the long-chain hydrocarbon-degrading bacterial communities within long-term chronically polluted soil in Ogoniland, by utilizing both traditional cultivation methods and modern culture-independent techniques. Results revealed that surface-polluted soil (SPS) and subsurface soil (SPSS) exhibit significantly higher total organic carbon (TOC) ranging from 5.64 to 5.06% and total petroleum hydrocarbons (TPH) levels ranging from 36,775 ppm to 14,087 ppm, compared to unpolluted soil (UPS) with 1.97% TOC and 479 ppm TPH, respectively. Analysis of carbon chain lengths reveals the prevalence of longer-chain alkanes (C20-28) in the surface soil. Culture-dependent methods, utilizing crude oil enrichment (COE) and paraffin wax enrichment (PWE), yield 47 bacterial isolates subjected to a long-chain alkane degradation assay. Twelve bacterial strains demonstrate significant degradation abilities across all enriched media. Three bacterial members, namely Pseudomonas sp. (almA), Marinomonas sp. (almA), and Alteromonas (ladA), exhibit genes responsible for long-chain alkane degradation, demonstrating efficiency between 50 and 80%. Culture-independent analysis reveals that surface SPS samples exhibit greater species richness and diversity compared to subsurface SPSS samples. Proteobacteria dominates as the phylum in both soil sample types, ranging from 22.23 to 82.61%, with Firmicutes (0.2-2.22%), Actinobacteria (0.4-3.02%), and Acidobacteria (0.1-3.53%) also prevalent. Bacterial profiles at genus level revealed that distinct variations among bacterial populations between SPS and SPSS samples comprising number of hydrocarbon degraders and the functional predictions also highlight the presence of potential catabolic genes (nahAa, adh2, and cpnA) in the polluted soil. However, culture-dependent analysis only captured a few of the dominant members found in culture-independent analysis, implying that more specialized media or environments are needed to isolate more bacterial members. The findings from this study contribute valuable information to ecological and biotechnological aspects, aiding in the development of more effective bioremediation applications for restoring oil-contaminated environments.
Keyphrases
  • heavy metals
  • plant growth
  • healthcare
  • genome wide
  • risk factors
  • fatty acid
  • dna methylation
  • gene expression
  • human health
  • single cell
  • cystic fibrosis
  • pseudomonas aeruginosa
  • transcription factor