Login / Signup

Models with commutative orthogonal block structure: a general condition for commutativity.

C SantosCélia NunesC DiasJoão T Mexia
Published in: Journal of applied statistics (2020)
A linear mixed model whose variance-covariance matrix is a linear combination of known pairwise orthogonal projection matrices that add to the identity matrix, is a model with orthogonal block structure (OBS). OBS have estimators with good behavior for estimable vectors and variance components, moreover it may be interesting that the least squares estimators give the best linear unbiased estimators, for estimable vectors. We can achieve it, requiring commutativity between the orthogonal projection matrix, on the space spanned by the mean vector, and the orthogonal projection matrices involved in the expression of the variance-covariance matrix. This commutativity condition defines a more restrict class of OBS, named COBS (model with commutative orthogonal block structure). With this work we aim to present a commutativity condition, resorting to a special class of matrices, named U-matrices.
Keyphrases
  • image quality
  • poor prognosis
  • computed tomography
  • magnetic resonance
  • long non coding rna
  • neural network