Login / Signup

T cell-intrinsic miR-155 is required for Th2 and Th17-biased responses in acute and chronic airway inflammation by targeting several different transcription factors.

Hyo Jin KimSeong Ok ParkHee Won ByeonJun Cheol EoJin Young ChoiMaryum TanveerErdenebelig UyangaaKoanhoi KimSeong Kug Eo
Published in: Immunology (2022)
Asthmatic airway inflammation is divided into two typical endotypes: Th2-mediated eosinophilic and Th1- or Th17-mediated neutrophilic airway inflammation. The miRNA miR-155 has well-documented roles in the regulation of adaptive T-cell responses and innate immunity. However, no specific cell-intrinsic role has yet been elucidated for miR-155 in T cells in the course of Th2-eosinophilic and Th17-neutrophilic airway inflammation using actual in vivo asthma models. Here, using conditional KO (miR155 ΔCD4 cKO) mice that have the specific deficiency of miR-155 in T cells, we found that the specific deficiency of miR-155 in T cells resulted in fully suppressed Th2-type eosinophilic airway inflammation following acute allergen exposure, as well as greatly attenuated the Th17-type neutrophilic airway inflammation induced by repeated allergen exposure. Furthermore, miR-155 in T cells appeared to regulate the expression of several different target genes in the functional activation of CD4 + Th2 and Th17 cells. To be more precise, the deficiency of miR-155 in T cells enhanced the expression of c-Maf, SOCS1, Fosl2 and Jarid2 in the course of CD4 + Th2 cell activation, while C/EBPβ was highly enhanced in CD4 + Th17 cell activation in the absence of miR-155 expression. Conclusively, our data revealed that miR-155 could promote Th2 and Th17-mediated airway inflammation via the regulation of several different target genes, depending on the context of asthmatic diseases. Therefore, these results provide valuable insights into actual understanding of specific cell-intrinsic role of miR-155 in eosinophilic and neutrophilic airway inflammation for the development of fine-tune therapeutic strategies.
Keyphrases