Anomalous Diffusion of Peripheral Membrane Signaling Proteins from All-Atom Molecular Dynamics Simulations.
Andrew D GeragotelisJ Alfredo FreitesDouglas J TobiasPublished in: The journal of physical chemistry. B (2021)
Peripheral membrane proteins bind transiently to membrane surfaces as part of many signaling pathways. The bound proteins perform two-dimensional (2-D) diffusion on the membrane surface during the recruitment function. To better understand the interplay between the 2-D diffusion of these protein domains and their membrane binding modes, we performed multimicrosecond all-atom molecular dynamics simulations of two regulatory domains, a C2 domain and a pleckstrin homology (PH) domain, in their experimentally determined bound configuration to a lipid bilayer. The protein bound configurations are preserved throughout the simulation trajectories. Both protein domains exhibit anomalous diffusion with distinct features in their dynamics that reflect their different modes of binding. An analysis of their diffusive behavior reveals common features with the diffusion of lipid molecules in lipid bilayers, suggesting that the 2-D motion of protein domains bound to the membrane surface is modulated by the viscoelastic nature of the lipid bilayer.