Whole-Genome Sequencing Analysis of Multidrug-Resistant Serotype 15A Streptococcus pneumoniae in Japan and the Emergence of a Highly Resistant Serotype 15A-ST9084 Clone.
Satoshi NakanoTakao FujisawaYutaka ItoBin ChangYasufumi MatsumuraMasaki YamamotoShigeru SugaMakoto OhnishiMiki NagaoPublished in: Antimicrobial agents and chemotherapy (2019)
Since the introduction of pneumococcal conjugate vaccines (PCVs), an increase in the incidence of disease attributable to serotype 15A-ST63 (sequence type 63) pneumococci has been observed in many regions worldwide. We conducted a nationwide pediatric pneumococcal infection surveillance study between 2012 and 2014 in Japan. In the surveillance study, we detected multidrug-resistant serotype 15A-CC63 (clonal complex 63) strains (resistant to macrolides, penicillin, cefotaxime, and meropenem); in this study, we analyzed these resistant isolates to determine the dynamics and mechanism of resistance using whole-genome sequencing. In most of the penicillin-, cefotaxime-, and meropenem-resistant strains, recombination occurred in the pbp2x region, resulting in the acquisition of cefotaxime resistance in addition to penicillin and meropenem resistance. In the multidrug-resistant serotype 15A-CC63 strains, we identified a specific clone with ST9084, and all of the isolates were recovered from the Yamaguchi prefecture in Japan. All of the serotype 15A-ST9084 isolates had a novel pbp2x type (pbp2x-JP3) that was inserted by recombination events. The conserved amino acid motif profiles of pbp1a, pbp2b, and pbp2x of the strains were identical to those of serotype 19A-ST320. A Bayesian analysis-based date estimation suggested that this clone emerged in approximately 2002 before the introduction of the PCV in Japan. This clone should be monitored because serotype 15A is not contained in the currently used 13-valent PCV (PCV13), and it was resistant to beta-lactams, which are often used in a clinical setting.