Kohonen Neural Network Investigation of the Effects of the Visual, Proprioceptive and Vestibular Systems to Balance in Young Healthy Adult Subjects.
Oseikhuemen Davis OjieReza SaatchiPublished in: Healthcare (Basel, Switzerland) (2021)
Kohonen neural network (KNN) was used to investigate the effects of the visual, proprioceptive and vestibular systems using the sway information in the mediolateral (ML) and anterior-posterior (AP) directions, obtained from an inertial measurement unit, placed at the lower backs of 23 healthy adult subjects (10 males, 13 females, mean (standard deviation) age: 24.5 (4.0) years, height: 173.6 (6.8) centimeter, weight: 72.7 (9.9) kg). The measurements were based on the modified Clinical Test of Sensory Interaction and Balance (mCTSIB). KNN clustered the subjects' time-domain sway measures by processing their sway's root mean square position, velocity, and acceleration. Clustering effectiveness was established using external performance indicators such as purity, precision-recall, and F-measure. Differences in these measures, from the clustering of each mCTSIB condition with its condition, were used to extract information about the balance-related sensory systems, where smaller values indicated reduced sway differences. The results for the parameters of purity, precision, recall, and F-measure were higher in the AP direction as compared to the ML direction by 7.12%, 11.64%, 7.12%, and 9.50% respectively, with their differences statistically significant (p < 0.05) thus suggesting the related sensory systems affect majorly the AP direction sway as compared to the ML direction sway. Sway differences in the ML direction were lowest in the presence of the visual system. It was concluded that the effect of the visual system on the balance can be examined mostly by the ML sway while the proprioceptive and vestibular systems can be examined mostly by the AP direction sway.