Login / Signup

Biosourced Multiphase Systems Based on Poly(Lactic Acid) and Polyamide 11 from Blends to Multi-Micro/Nanolayer Polymers Fabricated with Forced-Assembly Multilayer Coextrusion.

Nour JaouadiMohamed JaziriAbderrahim MaazouzKhalid Lamnawar
Published in: International journal of molecular sciences (2023)
The objective of the present study was to investigate multiphase systems based on polylactic acid (PLA) and polyamide 11 (PA11) from blends to multilayers. Firstly, PLA/PA11 blends compatibilized with a multifunctionalized epoxide, Joncryl, were obtained through reactive extrusion, and the thermal, morphological, rheological, and mechanical behaviors of these materials were investigated. The role of Joncryl as a compatibilizer for the PLA/PA11 system was demonstrated by the significant decrease in particle size and interfacial tension as well as by the tensile properties exhibiting a ductile behavior. Based on these findings, we were able to further clarify the effects of interdiffusion and diffuse interphase formation on the structure, rheology, and mechanics of compatible multilayered systems fabricated with forced-assembly multilayer coextrusion. The results presented herein aim to provide a deeper understanding of the interfacial properties, including the rheological, mechanical, and morphological behaviors, towards the control of the interface and confinement in multilayer polymers resulting from coextrusion, and also to permit their use in advanced applications.
Keyphrases
  • lactic acid
  • ionic liquid
  • molecular dynamics simulations
  • low grade
  • perovskite solar cells
  • high speed