Login / Signup

Dynamic Gesture Recognition Algorithm Based on 3D Convolutional Neural Network.

Yuting LiuDu JiangHaojie DuanYing SunGongfa LiBo TaoJuntong YunYing LiuBaojia Chen
Published in: Computational intelligence and neuroscience (2021)
Gesture recognition is one of the important ways of human-computer interaction, which is mainly detected by visual technology. The temporal and spatial features are extracted by convolution of the video containing gesture. However, compared with the convolution calculation of a single image, multiframe image of dynamic gestures has more computation, more complex feature extraction, and more network parameters, which affects the recognition efficiency and real-time performance of the model. To solve above problems, a dynamic gesture recognition model based on CBAM-C3D is proposed. Key frame extraction technology, multimodal joint training, and network optimization with BN layer are used for making the network performance better. The experiments show that the recognition accuracy of the proposed 3D convolutional neural network combined with attention mechanism reaches 72.4% on EgoGesture dataset, which is improved greatly compared with the current main dynamic gesture recognition methods, and the effectiveness of the proposed algorithm is verified.
Keyphrases
  • deep learning
  • convolutional neural network
  • systematic review
  • neural network
  • randomized controlled trial
  • endothelial cells
  • mental health
  • working memory
  • induced pluripotent stem cells