Login / Signup

Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers.

Cristina CastagnettiElisa BassoliLoris VincenziFrancesco Mancini
Published in: Sensors (Basel, Switzerland) (2019)
This paper discusses the performance of a terrestrial radar interferometer for the structural monitoring of ancient masonry towers. High-speed radar interferometry is an innovative and powerful remote sensing technique for the dynamic monitoring of large structures since it is contactless, non-destructive, and able to measure fast displacements on the order of tenths of millimeters. This methodology was tested on a masonry tower of great historical interest, the Saint Prospero bell tower (Northern Italy). To evaluate the quality of the results, data collected from the interferometer were compared and validated with those provided by two types of accelerometer-based measuring systems directly installed on the tower. Dynamic tests were conducted in operational conditions as well as during a bell concert. The first aimed at characterizing the dynamic behavior of the tower, while the second allowed to evaluate the bell swinging effects. Results showed a good agreement among the different measuring systems and demonstrated the potential of the radar interferometry for the dynamic monitoring of structures, with special focus on the need for an accurate design of the geometric aspects of the surveys.
Keyphrases
  • high speed
  • high resolution
  • atomic force microscopy
  • physical activity
  • risk assessment
  • cross sectional
  • deep learning