In Vivo Evaluation of the Combined Anticancer Effects of Cisplatin and SAHA in Nonsmall Cell Lung Carcinoma Using [18F]FAHA and [18F]FDG PET/CT Imaging.
Skye Hsin-Hsien YehMing Hsien LinI I Leo Garcia FloresUday MukhopadhyayDanial YoungKazuma OgawaJeong-Hwan JeongWilliam TongJuri George GelovaniNobuyoshi FukumitsuPublished in: Molecular imaging (2021)
Combining standard drugs with low doses of histone deacetylase inhibitors (HDACIs) is a promising strategy to increase the efficacy of chemotherapy. The ability of well-tolerated doses of HDACIs that act as chemosensitizers for platinum-based chemotherapeutics has recently been proven in many types and stages of cancer in vitro and in vivo. Detection of changes in HDAC activity/expression may provide important prognostic and predictive information and influence treatment decision-making. Use of [18F] FAHA, a HDAC IIa-specific radionuclide, for molecular imaging may enable longitudinal, noninvasive assessment of HDAC activity/expression in metastatic cancer. We evaluated the synergistic anticancer effects of cisplatin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in xenograft models of nonsmall cell lung cancer (NSCLC) using [18F] FAHA and [18F] FDG PET/CT imaging. Cisplatin alone significantly increased [18F] FAHA accumulation and reduced [18F] FDG accumulation in H441 and PC14 xenografts; coadministration of cisplatin and SAHA resulted in the opposite effects. Immunochemical staining for acetyl-histone H3 confirmed the PET/CT imaging findings. Moreover, SAHA had a more significant effect on the acetylome in PC14 (EGFR exon 19 deletion mutation) xenografts than H441 (wild-type EGFR and KRAS codon 12 mutant) xenografts. In conclusion, [18F] FAHA enables quantitative visualization of HDAC activity/expression in vivo, thus, may represent a clinically useful, noninvasive tool for the management of patients who may benefit from synergistic anticancer therapy.
Keyphrases
- histone deacetylase
- pet ct
- small cell lung cancer
- wild type
- epidermal growth factor receptor
- high resolution
- poor prognosis
- papillary thyroid
- decision making
- single cell
- binding protein
- squamous cell carcinoma
- tyrosine kinase
- positron emission tomography
- squamous cell
- long non coding rna
- lymph node metastasis
- advanced non small cell lung cancer
- combination therapy
- radiation therapy
- computed tomography
- fluorescence imaging
- mesenchymal stem cells
- replacement therapy
- social media
- young adults