Diet complexity in early life affects survival in released pheasants by altering foraging efficiency, food choice, handling skills and gut morphology.
Mark A WhitesideRufus SageJoah Robert MaddenPublished in: The Journal of animal ecology (2015)
Behavioural and physiological deficiencies are major reasons why reintroduction programmes suffer from high mortality when captive animals are used. Mitigation of these deficiencies is essential for successful reintroduction programmes. Our study manipulated early developmental diet to better replicate foraging behaviour in the wild. Over 2 years, we hand-reared 1800 pheasants (Phasianus colchicus), from 1 day old, for 7 weeks under different dietary conditions. In year one, 900 pheasants were divided into three groups and reared with (i) commercial chick crumb, (ii) crumb plus 1% live mealworm or (iii) crumb plus 5% mixed seed and fruit. In year two, a further 900 pheasants were divided into two groups and reared with (i) commercial chick crumb or (ii) crumb plus a combination of 1% mealworm and 5% mixed seed and fruit. In both years, the commercial chick crumb acted as a control treatment, whilst those with live prey and mixed seeds and fruits mimicking a more naturalistic diet. After 7 weeks reared on these diets, pheasants were released into the wild. Postrelease survival was improved with exposure to more naturalistic diets prior to release. We identified four mechanisms to explain this. Pheasants reared with more naturalistic diets (i) foraged for less time and had a higher likelihood of performing vigilance behaviours, (ii) were quicker at handling live prey items, (iii) were less reliant on supplementary feed which could be withdrawn and (iv) developed different gut morphologies. These mechanisms allowed the pheasants to (i) reduce the risk of predation by reducing exposure time whilst foraging and allowing more time to be vigilant; (ii) be better at handling and discriminating natural food items and not be solely reliant on supplementary feed; and (iii) have a better gut system to cope with the natural forage after the cessation of supplementary feeding in the spring. Learning food discrimination, preference and handling skills by the provision of a more naturalistic diet is essential prior to the release of pheasants in a reintroduction programme. Subsequent diet, foraging behaviour, gut morphology and digestive capabilities all work together as one nutritional complex. Simple manipulations during early development can influence these characteristics to better prepare an individual for survival upon release.