Login / Signup

DUSP6 regulates radio-sensitivity in glioblastoma by modulating the recruitment of p-DNAPKcs at DNA double-strand breaks.

Jyothi NairSafiulla Basha SyedTejashree MahaddalkarMadhura KetkarRahul ThoratJayant Sastri GodaShilpee Dutt
Published in: Journal of cell science (2021)
Glioblastoma (GBM) has poor median survival due to its resistance to chemo-radiotherapy regimen, resulting in tumor recurrence. Recurrent GBMs currently lack effective treatments. DUSP6 is known to be pro-tumorigenic and is up-regulated in GBM. We show that DUSP6 expression is significantly higher in recurrent GBM patient biopsies (n=11) compared to primary biopsies (n=11). Importantly, although reported as cytoplasmic protein, we found nuclear localization of DUSP6 in primary and recurrent patient samples and in parent and relapse population of GBM cell lines generated from in vitro radiation survival model. DUSP6 inhibition using BCI resulted in decreased proliferation and clonogenic survival of parent and relapse cells. Pharmacological or genetic inhibition of DUSP6 catalytic activity radio-sensitized primary and importantly, relapse GBM cells by inhibiting the recruitment of p-DNAPKcs, subsequently down-regulating the recruitment of γH2AX and 53BP1. This resulted in decreased cell survival and prolonged growth arrest upon irradiation in vitro and significantly increased the progression-free survival in orthotopic mouse models of GBM. Our study highlights a non-canonical function of DUSP6, emphasizing the potential application of DUSP6 inhibitors in the treatment of recurrent GBM.
Keyphrases