Login / Signup

Nanocomposite coatings for the prevention of surface contamination by coronavirus.

Esti ToledoSharon DimAvishay EdriYariv GreenshpanAner OttolenghiNadav EisnerSivan TzadkaAshish PandeyHaggai Ben NunGuillaume Le SauxAngel PorgadorMark Schvartzman
Published in: PloS one (2022)
The current Covid-19 pandemic has a profound impact on all aspects of our lives. Aside from contagion by aerosols, the presence of the SARS-CoV-2 is ubiquitous on surfaces that millions of people handle daily. Therefore, controlling this pandemic involves the reduction of potential infections via contaminated surfaces. We developed antiviral surfaces by preparing suspensions of copper and cupric oxide nanoparticles in two different polymer matrices, poly(methyl methacrylate) and polyepoxide. For total copper contents as low as 5%, the composite material showed remarkable antiviral properties against the HCoV-OC43 human coronavirus and against a model lentivirus and proved well-resistant to accelerated aging conditions. Importantly, we showed that the Cu/CuO mixture showed optimal performances. This product can be implemented to produce a simple and inexpensive coating with long-term antiviral properties and will open the way to developing surface coatings against a broad spectrum of pathogens including SARS-CoV-2.
Keyphrases