High resolution full-field optical coherence tomography microscope for the evaluation of freshly excised skin specimens during Mohs surgery: A feasibility study.
Manu JainShu-Wen ChangKiran SinghNicholas R KurtanskySheng-Lung HuangHomer H ChenChih-Shan Jason ChenPublished in: Journal of biophotonics (2023)
Histopathology for tumor margin assessment is time-consuming and expensive. High-resolution full-field optical coherence tomography (FF-OCT) images fresh tissues rapidly at cellular resolution and potentially facilitates evaluation. Here, we define FF-OCT features of normal and neoplastic skin lesions in fresh ex vivo tissues and assess its diagnostic accuracy for malignancies. For this, normal and neoplastic tissues were obtained from Mohs surgery, imaged using FF-OCT, and their features were described. Two expert OCT readers conducted a blinded analysis to evaluate their diagnostic accuracies, using histopathology as the ground truth. A convolutional neural network was built to distinguish and outline normal structures and tumors. Of the 113 tissues imaged, 95 (84%) had a tumor (75 BCCs and 17 SCCs). The average reader diagnostic accuracy was 88.1%, with, a sensitivity of 93.7%, and a specificity of 58.3%. The AI model achieved a diagnostic accuracy of 87.6% ± 5.9%, sensitivity of 93.2% ± 2.1%, and specificity of 81.2% ± 9.2%. A mean intersection-over-union of 60.3% ± 10.1% was achieved when delineating the nodular BCC from normal structures. Limitation of the study was the small sample size for all tumors, especially SCCs. However, based on our preliminary results, we envision FF-OCT to rapidly image fresh tissues, facilitating surgical margin assessment. AI algorithms can aid in automated tumor detection, enabling widespread adoption of this technique. This article is protected by copyright. All rights reserved.
Keyphrases
- optical coherence tomography
- high resolution
- deep learning
- diabetic retinopathy
- convolutional neural network
- gene expression
- optic nerve
- artificial intelligence
- minimally invasive
- machine learning
- coronary artery bypass
- randomized controlled trial
- high throughput
- clinical trial
- basal cell carcinoma
- label free
- percutaneous coronary intervention
- acute coronary syndrome
- real time pcr