Login / Signup

The Expression of Kisspeptins and Matrix Metalloproteinases in Extragenital Endometriosis.

Tatiana KleimenovaVictoriya O PolyakovaNatalia Sergeevna LinkovaAnna O DrobintsevaDmitriy MedvedevAlexander Krasichkov
Published in: Biomedicines (2024)
Endometriosis is characterized by a condition where endometrial tissue grows outside the uterine cavity. The mechanisms of endometrium growth during endometriosis might be similar to the development of a tumor. The kisspeptin (KISS1) gene was initially discovered as a suppressor of metastasis. Matrix metalloproteinases (MMPs) and their inhibitors are described as factors in the early stages of endometriosis and tumor growth progression. We applied the quantitative polymerase chain reaction and the immunofluorescence method to investigate KISS1, its receptor (KISS1R), MMP-2, and MMP-9 in the eutopic and ectopic endometrium in women with and without endometriosis. We presume that the dysregulation of KISS1 and MMPs might contribute to endometriosis pathogenesis. Samples for the immunofluorescence study were collected from patients with a confirmed diagnosis of endometriosis in stages I-IV, aged 23 to 38 years old ( n = 40). The cell line was derived from the endometrium of patients with extragenital endometriosis ( n = 7). KISS1 and KISS1R expression are present in the ectopic endometrium of patients with extragenital endometriosis, as opposed to the control group where these proteins were not expressed. There is a decrease in KISS1 and KISS1R values at all stages of endometriosis. MMP-2 and MMP-9 genes express statistically significant increases in stages II, III, and IV of extragenital endometriosis. MMP synthesis increased in the last stages of endometriosis. We suppose that the KISS1/KISS1R system can be used in the future as a suppressive complex to reduce MMP-2 and MMP-9 expression and prevent endometrial cells from invading.
Keyphrases
  • poor prognosis
  • genome wide
  • gene expression
  • mass spectrometry
  • binding protein
  • endometrial cancer