Login / Signup

Impact of quercetin on autophagy and apoptosis induced by a high concentration of CuSO 4 in porcine ovarian granulosa cells.

Nannan QiBinbin WangWenwen XingMengxuan LiJiying Liu
Published in: Domestic animal endocrinology (2024)
Copper is a vital micronutrient necessary for the maintenance of physiological functions. However, excessive amounts can lead to organ damage. Porcine ovarian granulosa cells are damaged by a high concentration of CuSO 4 , which can reduce the reproductive capacity of sows. Quercetin has shown remarkable efficacy in mitigating the harmful effects of heavy metals. Therefore, the aim of this study was to investigate the effects of a high concentration of CuSO 4 on autophagy and apoptosis in porcine ovarian granulosa cells and to explore whether quercetin can counteract these toxic effect. Cell morphology, and the mRNA expression levels of autophagy-related genes (LC3-Ⅰ, ATG5, ATG7, ATG12, Beclin1, mTOR, LC3-Ⅱ and P62) were significantly changed upon treatment with 200 and 400 µM CuSO 4 . Treatment with 200 µM CuSO 4 increased expression of P62 protein (P<0.05), promoted LC3-Ⅰ to LC3-Ⅱ conversion (P<0.05), and reduced PINK1 protein expression and the ATP content (P<0.05). In addition, expression of Caspase3 protein was increased and TUNEL staining indicated that the number of apoptotic cells was increased. However, co-treatment with 10 µM quercetin significantly decreased expression of P62 and conversion of LC3-Ⅰ to LC3-Ⅱ. Furthermore, flow cytometric analysis revealed that addition of 10 µM quercetin significantly reduced apoptosis induced by a high concentration of CuSO 4 . In summary, the results indicate that a high concentration of CuSO 4 can trigger mitochondrial and autophagy dysfunction, activate mitochondrial apoptosis pathway, and exert cytotoxic effects. Quercetin can mitigate autophagy dysfunction, enhance autophagic processes, and alleviate apoptosis.
Keyphrases