OsGLP3-7 positively regulates rice immune response by activating hydrogen peroxide, jasmonic acid, and phytoalexin metabolic pathways.
Bingrui SunWenyan LiYamei MaTing YuWenjie HuangJierong DingHang YuLiqun JiangJing ZhangShuwei LvJianyuan YangShijuan YanBin LiuQing LiuPublished in: Molecular plant pathology (2023)
Although germin-like proteins (GLPs) have been demonstrated to participate in plant biotic stress responses, their specific functions in rice disease resistance are still largely unknown. Here, we report the identification and characterization of OsGLP3-7, a member of the GLP family in rice. Expression of OsGLP3-7 was significantly induced by pathogen infection, jasmonic acid (JA) treatment, and hydrogen peroxide (H 2 O 2 ) treatment. OsGLP3-7 was highly expressed in leaves and sublocalized in the cytoplasm. Overexpression of OsGLP3-7 increased plant resistance to leaf blast, panicle blast, and bacterial blight, whereas disease resistance in OsGLP3-7 RNAi silenced plants was remarkably compromised, suggesting this gene is a positive regulator of disease resistance in rice. Further analysis showed that OsGLP3-7 has superoxide dismutase (SOD) activity and can influence the accumulation of H 2 O 2 in transgenic plants. Many genes involved in JA and phytoalexin biosynthesis were strongly induced, accompanied with elevated levels of JA and phytoalexins in OsGLP3-7-overexpressing plants, while expression of these genes was significantly suppressed and the levels of JA and phytoalexins were reduced in OsGLP3-7 RNAi plants compared with control plants, both before and after pathogen inoculation. Moreover, we showed that OsGLP3-7-dependent phytoalexin accumulation may, at least partially, be attributed to the elevated JA levels observed after pathogen infection. Taken together, our results indicate that OsGLP3-7 positively regulates rice disease resistance by activating JA and phytoalexin metabolic pathways, thus providing novel insights into the disease resistance mechanisms conferred by GLPs in rice.
Keyphrases
- hydrogen peroxide
- immune response
- nitric oxide
- poor prognosis
- signaling pathway
- transcription factor
- genome wide
- cell proliferation
- gene expression
- copy number
- toll like receptor
- dna methylation
- oxidative stress
- dendritic cells
- endothelial cells
- inflammatory response
- high glucose
- smoking cessation
- replacement therapy