In the real world, how to effectively learn consistent similarity measurement across different modalities is essential. Most of the existing similarity learning methods cannot deal well with cross-modal data due to the modality gap and have obvious performance degeneration when applied to cross-modal data. To tackle this problem, we propose a novel cross-modal similarity learning method, called Causality-Invariant Interactive Mining (CIIM), that can effectively capture informative relationships among different samples and modalities to derive the modality-consistent feature embeddings in the unified metric space. Our CIIM tackles the modality gap from two aspects, i.e., sample-wise and feature-wise. Specifically, we start from the sample-wise view and learn the single-modality and hybrid-modality proxies for exploring the cross-modal similarity with the elaborate metric losses. In this way, sample-to-sample and sample-to-proxy correlations are both taken into consideration. Furthermore, we conduct the causal intervention to eliminate the modality bias and reconstruct the invariant causal embedding in the feature-wise aspect. To this end, we force the learned embeddings to satisfy the specific properties of our causal mechanism and derive the causality-invariant feature embeddings in the unified metric space. Extensive experiments on two cross-modality tasks demonstrate the superiority of our proposed method over the state-of-the-art methods.