Login / Signup

Tuning Microcapsule Shell Thickness and Structure with Silk Fibroin and Nanoparticles for Sustained Release.

Yongfeng WangQingqing ChengJian LiuZeeshan TariqZhaozhu ZhengGang LiDavid Lee KaplanXiaoqin Wang
Published in: ACS biomaterials science & engineering (2020)
Microcapsules have attracted widespread interest for their unique properties in encapsulation, protection, and separation of active ingredients from the surrounding environment. However, microcapsule carriers with controllable shell thickness, permeability, good mechanical properties, and thermostability are challenging to obtain. Herein, robust and versatile composite microcapsules were fabricated using SiO2 nanoparticle-stabilized (Pickering) oil emulsions as core templates, while silk fibroin (SF) was assembled at the oil/water interface. This process resulted in the formation of physically and chemically stable microcapsules with a thick (∼800 nm) shell that protected the encapsulated ingredient from high shear forces and high temperatures during spray-drying. SiO2 nanoparticles were randomly distributed in the shell matrix after preparation, making the microcapsules mechanically robust (4.48 times higher than control samples prepared using surfactant Tween 80 instead of the SiO2 nanoparticles), as well as thermostable (retained shape to 900 °C). The microcapsules displayed tunable drug release by adjusting the SF content in the shell. Under optimal conditions (weight ratio of SiO2/SF = 7:10, corn oil content about 55 wt %), a model drug (curcumin) was encapsulated in the SF microcapsules with an encapsulation efficiency up to 95%. The in vitro drug release from these SF microcapsules lasted longer than control microcapsules, demonstrating the capability of these novel microcapsules in sustaining drug release.
Keyphrases
  • drug release
  • drug delivery
  • emergency department
  • fatty acid
  • tissue engineering
  • body mass index
  • endothelial cells
  • weight gain
  • quantum dots