Login / Signup

MLNAS: Meta-learning based neural architecture search for automated generation of deep neural networks for plant disease detection tasks.

Sahil VermaPrabhat KumarJyoti Prakash Singh
Published in: Network (Bristol, England) (2024)
Plant diseases pose a significant threat to agricultural productivity worldwide. Convolutional neural networks (CNNs) have achieved state-of-the-art performances on several plant disease detection tasks. However, the manual development of CNN models using an exhaustive approach is a resource-intensive task. Neural Architecture Search (NAS) has emerged as an innovative paradigm that seeks to automate model generation procedures without human intervention. However, the application of NAS in plant disease detection has received limited attention. In this work, we propose a two-stage meta-learning-based neural architecture search system (ML NAS) to automate the generation of CNN models for unseen plant disease detection tasks. The first stage recommends the most suitable benchmark models for unseen plant disease detection tasks based on the prior evaluations of benchmark models on existing plant disease datasets. In the second stage, the proposed NAS operators are employed to optimize the recommended model for the target task. The experimental results showed that the MLNAS system's model outperformed state-of-the-art models on the fruit disease dataset, achieving an accuracy of 99.61%. Furthermore, the MLNAS-generated model outperformed the Progressive NAS model on the 8-class plant disease dataset, achieving an accuracy of 99.8%. Hence, the proposed MLNAS system facilitates faster model development with reduced computational costs.
Keyphrases
  • working memory
  • convolutional neural network
  • randomized controlled trial
  • climate change
  • risk assessment
  • label free
  • machine learning
  • real time pcr
  • heavy metals