Inhibition of lncRNA TCONS_00077866 Ameliorates the High Stearic Acid Diet-Induced Mouse Pancreatic β-Cell Inflammatory Response by Increasing miR-297b-5p to Downregulate SAA3 Expression.
Huimin LuRui GuoYunjin ZhangShenghan SuQingrui ZhaoYue YuHongbo ShiHaoran SunYongjian ZhangShenglong LiDan ShiXia ChuChanghao SunPublished in: Diabetes (2021)
Long-term consumption of a high-fat diet increases the circulating concentration of stearic acid (SA), which has a potent toxic effect on β-cells, but the underlying molecular mechanisms of this action have not been fully elucidated. Here, we evaluated the role of long noncoding (lnc)RNA TCONS_00077866 (lnc866) in SA-induced β-cell inflammation. lnc866 was selected for study because lncRNA high-throughput sequencing analysis demonstrated it to have the largest fold-difference in expression of five lncRNAs that were affected by SA treatment. Knockdown of lnc866 by virus-mediated shRNA expression in mice or by Smart Silencer in mouse pancreatic β-TC6 cells significantly inhibited the SA-induced reduction in insulin secretion and β-cell inflammation. According to lncRNA-miRNAs-mRNA coexpression network analysis and luciferase reporter assays, lnc866 directly bound to miR-297b-5p, thereby preventing it from reducing the expression of its target serum amyloid A3 (SAA3). Furthermore, overexpression of miR-297b-5p or inhibition of SAA3 also had marked protective effects against the deleterious effects of SA in β-TC6 cells and mouse islets. In conclusion, lnc866 silencing ameliorates SA-induced β-cell inflammation by targeting the miR-297b-5p/SAA3 axis. lnc866 inhibition may represent a new strategy to protect β-cells against the effects of SA during the development of type 2 diabetes.
Keyphrases
- induced apoptosis
- poor prognosis
- high fat diet
- oxidative stress
- cell cycle arrest
- single cell
- network analysis
- inflammatory response
- cell therapy
- diabetic rats
- long non coding rna
- high glucose
- signaling pathway
- high throughput
- crispr cas
- insulin resistance
- drug induced
- endothelial cells
- cell proliferation
- bone marrow
- combination therapy
- anti inflammatory