Login / Signup

Kinase Inhibitor Scaffold Hopping with Deep Learning Approaches.

Lizhao HuYuyao YangShuangjia ZhengJun XuTing RanHongming Chen
Published in: Journal of chemical information and modeling (2021)
The protein kinase family contains many promising drug targets. Many kinase inhibitors target the ATP-binding pocket, leading to approved drugs in past decades. Scaffold hopping is an effective approach for drug design. The kinase ATP-binding pocket is highly conserved, crossing the whole kinase family. This provides an opportunity to develop a scaffold hopping approach to explore diversified scaffolds among various kinase inhibitors. In this work, we report the SyntaLinker-Hybrid scheme for kinase inhibitor scaffold hopping. With this scheme, we replace molecular fragments bound at the conserved kinase hinge region with deep generative models. Thus, we are able to generate new kinase-inhibitor-like structures hybridizing the privileged fragments against the hinge region. We demonstrate that this scheme allows generation of kinase-inhibitor-like molecules with novel scaffolds, while retaining the binding features of existing kinase inhibitors. This work can be employed in lead identification against kinase targets.
Keyphrases