Login / Signup

Subjective evidence evaluation survey for many-analysts studies.

Alexandra SarafoglouSuzanne HoogeveenDon van den BerghBalazs AczelCasper J AlbersTim AlthoffRotem Botvinik-NezerNiko A BuschAndrea M CataldoBerna DevezerNoah N N van DongenAnna DreberEiko I FriedRink HoekstraFelix HolzmeisterJürgen HuberNick Huntington-KleinJohn P A IoannidisMagnus JohannessonMichael KirchlerEric LokenJan-Francois ManginDora MatzkeAlbert J MenkveldGustav NilsonneDon van RavenzwaaijMartin SchweinsbergHannah Schulz-KuempelDavid R ShanksDaniel J SimonsBarbara A SpellmanAndrea H StoevenbeltBarnabas SzasziDarinka TrübutschekFrancis TuerlinckxEric L UhlmannWolf VanpaemelJelte WichertsEric-Jan Wagenmakers
Published in: Royal Society open science (2024)
Many-analysts studies explore how well an empirical claim withstands plausible alternative analyses of the same dataset by multiple, independent analysis teams. Conclusions from these studies typically rely on a single outcome metric (e.g. effect size) provided by each analysis team. Although informative about the range of plausible effects in a dataset, a single effect size from each team does not provide a complete, nuanced understanding of how analysis choices are related to the outcome. We used the Delphi consensus technique with input from 37 experts to develop an 18-item subjective evidence evaluation survey (SEES) to evaluate how each analysis team views the methodological appropriateness of the research design and the strength of evidence for the hypothesis. We illustrate the usefulness of the SEES in providing richer evidence assessment with pilot data from a previous many-analysts study.
Keyphrases
  • palliative care
  • randomized controlled trial
  • clinical trial
  • machine learning
  • big data
  • study protocol
  • physical activity
  • electronic health record
  • sleep quality