Login / Signup

Brain age estimation reveals older adults' accelerated senescence after traumatic brain injury.

Anar AmgalanAlexander F ShidaSatyaki GhoshHelena C ChuiPaul BogdanAndrei Irimia
Published in: GeroScience (2022)
Adults aged 60 and over are most vulnerable to mild traumatic brain injury (mTBI). Nevertheless, the extent to which chronological age (CA) at injury affects TBI-related brain aging is unknown. This study applies Gaussian process regression to T 1 -weighted magnetic resonance images (MRIs) acquired within [Formula: see text]7 days and again [Formula: see text]6 months after a single mTBI sustained by 133 participants aged 20-83 (CA [Formula: see text] = 42.6 ± 17 years; 51 females). Brain BAs are estimated, modeled, and compared as a function of sex and CA at injury using a statistical model selection procedure. On average, the brains of older adults age by 15.3 ± 6.9 years after mTBI, whereas those of younger adults age only by 1.8 ± 5.6 years, a significant difference (Welch's t 32  =  - 9.17, p ≃ 9.47 × 10 -11 ). For an adult aged [Formula: see text]30 to [Formula: see text]60, the expected amount of TBI-related brain aging is [Formula: see text]3 years greater than in an individual younger by a decade. For an individual over [Formula: see text]60, the respective amount is [Formula: see text]7 years. Despite no significant sex differences in brain aging (Welch's t 108  = 0.78, p > 0.78), the statistical test is underpowered. BAs estimated at acute baseline versus chronic follow-up do not differ significantly (t 264  = 0.41, p > 0.66, power = 80%), suggesting negligible TBI-related brain aging during the chronic stage of TBI despite accelerated aging during the acute stage. Our results indicate that a single mTBI sustained after age [Formula: see text]60 involves approximately [Formula: see text]10 years of premature and lasting brain aging, which is MRI detectable as early as [Formula: see text]7 days post-injury.
Keyphrases