Basic β-1,3-Glucanase from Drosera binata Exhibits Antifungal Potential in Transgenic Tobacco Plants.
Miroslav RajninecMonika FratrikovaEva BoszorádováMartin JopcikMiroslav BauerJana LibantovaPublished in: Plants (Basel, Switzerland) (2021)
The basic β-1,3-glucanase of the carnivorous plant Drosera binata was tested as a purified protein, as well as under the control of a double CaMV35S promoter in transgenic tobacco for its capability to inhibit the growth of Trichoderma viride, Rhizoctonia solani, Alternaria solani, and Fusarium poae in an in-vitro assay. The purified protein inhibited tested phytopathogens but not the saprophytic fungus T. viride. Out of the analysed transgenic plants, lines 13, 16, 19, and 22 exhibited high DbGluc1 transcript abundance normalised to the actin transcript. Because of DbGluc1 transgene expression, lines 13 and 16 showed a 1.7-fold increase and lines 19 and 22 showed more than a 2-fold increase in total β-1,3-glucanase activity compared to the non-transgenic control. In accordance with the purified β-1,3-glucanase in-vitro antifungal assay, crude protein extracts of lines 19 and 22 significantly inhibited the growth of phytopathogens (14-34%). Further analyses revealed that the complementary action of transgenic β-1,3-glucanase and 20% higher activity of endogenous chitinase(s) in these lines were crucial for maximising the antifungal efficiency of crude protein extracts.