Longitudinal associations between β-amyloid and cortical thickness in mild cognitive impairment.
Elijah MakLiwen ZhangChin Hong TanAnthonin ReilhacHee Youn ShimMarcus Ong Qin WenZi Xuen WongEddie Jun Yi ChongXin XuMary StephensonNarayanaswamy VenketasubramanianJuan Helen ZhouJohn Tiernan O'BrienChristopher Li-Hsian ChenPublished in: Brain communications (2023)
How beta-amyloid accumulation influences brain atrophy in Alzheimer's disease remains contentious with conflicting findings. We aimed to elucidate the correlations of regional longitudinal atrophy with cross-sectional regional and global amyloid in individuals with mild cognitive impairment and no cognitive impairment. We hypothesized that greater cortical thinning over time correlated with greater amyloid deposition, particularly within Alzheimer's disease characteristic regions in mild cognitive impairment, and weaker or no correlations in those with no cognitive impairment. 45 patients with mild cognitive impairment and 12 controls underwent a cross-sectional [ 11 C]-Pittsburgh Compound B PET and two retrospective longitudinal structural imaging (follow-up: 23.65 ± 2.04 months) to assess global/regional amyloid and regional cortical thickness, respectively. Separate linear mixed models were constructed to evaluate relationships of either global or regional amyloid with regional cortical thinning longitudinally. In patients with mild cognitive impairment, regional amyloid in the right banks of the superior temporal sulcus was associated with longitudinal cortical thinning in the right medial orbitofrontal cortex ( P = 0.04 after False Discovery Rate correction). In the mild cognitive impairment group, greater right banks amyloid burden and less cortical thickness in the right medial orbitofrontal cortex showed greater visual and verbal memory decline over time, which was not observed in controls. Global amyloid was not associated with longitudinal cortical thinning in any locations in either group. Our findings indicate an increasing influence of amyloid on neurodegeneration and memory along the preclinical to prodromal spectrum. Future multimodal studies that include additional biomarkers will be well-suited to delineate the interplay between various pathological processes and amyloid and memory decline, as well as clarify their additive or independent effects along the disease deterioration.