Login / Signup

Visible-Band Chiroptical Meta-devices with Phase-Change Adjusted Optical Chirality.

Lu ZhangKun GaoFanfan LuLei XuMohsen RahmaniLixun SunFeng GaoWending ZhangTing Mei
Published in: Nano letters (2022)
Low-cost large-area chirality meta-devices (CMDs) with adjustable optical chirality are of great interest for polarization-sensitive imaging, stereoscopic display, enantioselectivity analysis, and catalysis. Currently, CMDs with adjusted chiroptical responses in the mid-infrared to terahertz band have been demonstrated by exploiting photocarriers of silicon, pressure, and phase-change of GSTs but are still absent in the visible band, which in turn limits the development of chiral nanophotonic devices. Herein, by employing a phase-change material (Sb 2 S 3 ), we present a protocol for the fabrication of wafer-scale visible-band enantiomeric CMDs with handedness, spectral, and polarization adjustability. As measured by circular dichroism, the chirality signs of CMDs enantiomers can be adjusted with Sb 2 S 3 from amorphous to crystalline, and the chirality resonance wavelength can also be adjusted. Our results suggest a new type of meta-devices with adjustable chiroptical responses that may potentially enable a wide range of chirality nanophotonic applications including highly sensitive sensing and surface-enhanced nanospectroscopy.
Keyphrases