Comparison of the Effects of Pulsed Electromagnetic Field and Extracorporeal Shockwave Therapy in a Rabbit Model of Experimentally Induced Achilles Tendon Injury.
Coşar UzunNurten ErdalSerkan GürgülDeniz KalaycıNecat Şakir YilmazAsena Ayca OzdemirDerya YetkinCengiz YılmazPublished in: Bioelectromagnetics (2020)
Achilles tendon injuries are a common cause of complications including adhesions and tendon degeneration. As a result of these complications, the biomechanical properties are lost. Extracorporeal shockwave therapy (ESWT) and pulsed electromagnetic field (PEMF) recover the injured tendon structure; however, detailed studies of changes in tendon biomechanical properties are limited. We hypothesized that PEMF application would improve Achilles tendon biomechanical properties similar to ESWT. The curative effects of a PEMF 4-week application (15 Hz, 1 mT, 260 µs, 1 h/day) and ESWT (3 doses/28 days, 1st dose: 0.12 mJ/mm2 , 15 Hz, 300 impulses; 2nd dose: 0.14 mJ/mm2 , 15 Hz, 500 impulses; 3rd dose: 0.14 mJ/mm2 , 15 Hz, 500 impulses) on rabbits with Achilles tendon injury were investigated in terms of histopathological and biomechanical properties. The clinical feasibility of PEMF application was evaluated by comparing the results of both methods. Fifty New Zealand female rabbits were divided into two groups to be used in either biomechanical or immunohistochemical studies. Each of the two groups was further divided into five groups: C (Control), SH (Sham), TI (tendon injury), TI + ESWT, and TI + PEMF. Biomechanical evaluations revealed that maximum load, toughness, and maximum stress averages of the TI + PEMF group significantly increased (P < 0.05). When immunohistochemical images of the TI + PEMF group were compared with those of the TI group, the amount of fibrous tissue was less, the homogeneity of collagen fibers recovered, and collagen organization was more uniform. We conclude that both ESWT and PEMF are equally efficient for Achilles tendon recovery. PEMF application is effective and can be used in the clinic as a painless alternative treatment method. © 2020 Bioelectromagnetics Society.
Keyphrases
- finite element analysis
- finite element
- anterior cruciate ligament reconstruction
- risk factors
- high frequency
- clinical trial
- randomized controlled trial
- deep learning
- stem cells
- single cell
- case control
- bone marrow
- diabetic rats
- high resolution
- resting state
- machine learning
- cell therapy
- placebo controlled
- drug induced
- combination therapy
- smoking cessation
- functional connectivity
- double blind