Login / Signup

High-Fidelity CRISPR/Cas13a trans-Cleavage-Triggered Rolling Circle Amplified DNAzyme for Visual Profiling of MicroRNA.

Ting ZhouMengqi HuangJinqiong LinRu HuangDa Xing
Published in: Analytical chemistry (2021)
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) (CRISPR/Cas) system innovates a next-generation biosensor due to its high-fidelity, programmability, and efficient signal amplification ability. Developing a CRISPR/Cas-based visual detection system could contribute to point-of-care biomarker diagnosis. Existing CRISPR/Cas9-mediated visual detection methods are limited by the inherent properties of Cas9. Herein, we explored the trans-cleavage ability of Cas13a on ribonucleotide-bearing DNA oligo, eliminated the unavailability of the trans-cleavage substrate for subsequent polymerization reaction, and developed a homogeneous CRISPR/Cas13a-based visual detection system (termed vCas) for specific and sensitive detection of miRNA. The results indicated that vCas can provide a detection limit of 1 fM for miR-10b with single-base specificity and can be used to analyze miRNA in serum and cell extracts. Conclusively, vCas holds a great application prospective for clinical molecular diagnosis.
Keyphrases