New-onset type 1 diabetes in children and adolescents as postacute sequelae of SARS-CoV-2 infection: A systematic review and meta-analysis of cohort studies.
Masoud RahmatiDong-Keon YonSeung-Won LeeRaphael UdehMark McEVoyMin Seo KimRazak M GyasiHans OhGuillermo F López SánchezLouis JacobYusheng LiAi KoyanagiYoun Ho ShinLee SmithPublished in: Journal of medical virology (2023)
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents may increase risk for a variety of post-acute sequelae including new-onset type 1 diabetes mellitus (T1DM). Therefore, this meta-analysis aims to estimate the risk of developing new-onset type 1 diabetes in children and adolescents as post-acute sequelae of SARS-CoV-2 infection. PubMed/MEDLINE, CENTRAL, and EMBASE were systematically searched up to March 20, 2023. A systematic review and subsequent meta-analyses were performed to calculate the pooled effect size, expressed as risk ratio (RR) with corresponding 95% confidence interval (CI) of each outcome based on a one-stage approach and the random-effects estimate of the pooled effect sizes of each outcome were generated with the use of the DerSimonian-Laird method. Eight reports from seven studies involving 11 220 530 participants (2 140 897 patients with a history of diagnosed SARS-CoV-2 infection and 9 079 633 participants in the respective control groups) were included. The included studies reported data from four U.S. medical claims databases covering more than 503 million patients (IQVIA, HealthVerity, TriNetX, and Cerner Real-World Data), and three national health registries for all children and adolescents in Norway, Scotland, and Denmark. It was shown that the risk of new-onset T1DM following SARS-CoV-2 infection in children and adolescents was 42% (95% CI 13%-77%, p = 0.002) higher compared with non-COVID-19 control groups. The risk of developing new-onset T1DM following SARS-CoV-2 infection was significantly higher (67%, 95% CI 32 %-112%, p = 0.0001) in children and adolescents between 0 and 11 years, but not in those between 12 and 17 years (RR = 1.10, 95% CI 0.54-2.23, p = 0.79). We also found that the higher risk for developing new-onset T1DM following SARS-CoV-2 infection only exists in studies from the United States (RR = 1.70, 95% CI 1.37-2.11, p = 0.00001) but not Europe (RR = 1.02, 95% CI 0.67-1.55, p = 0.93). Furthermore, we found that SARS-CoV-2 infection was associated with an elevation in the risk of diabetic ketoacidosis (DKA) in children and adolescents compared with non-COVID-19 control groups (RR = 2.56, 95% CI 1.07-6.11, p = 0.03). Our findings mainly obtained from US medical claims databases, suggest that SARS-CoV-2 infection is associated with higher risk of developing new-onset T1DM and diabetic ketoacidosis in children and adolescents. These findings highlight the need for targeted measures to raise public health practitioners and physician awareness to provide intervention strategies to reduce the risk of developing T1DM in children and adolescents who have had COVID-19.
Keyphrases
- respiratory syndrome coronavirus
- sars cov
- coronavirus disease
- type diabetes
- glycemic control
- public health
- systematic review
- primary care
- meta analyses
- healthcare
- randomized controlled trial
- ejection fraction
- emergency department
- case control
- health insurance
- cardiovascular disease
- newly diagnosed
- liver failure
- insulin resistance
- electronic health record
- end stage renal disease
- respiratory failure
- deep learning
- skeletal muscle
- general practice
- double blind
- prognostic factors