miR-302a-3p regulates RANKL expression in human mandibular osteoblast-like cells.
Rizky A IrwandiPakchisa KhonsuphapPirawish LimlawanAnjalee VacharaksaPublished in: Journal of cellular biochemistry (2018)
Receptor activator of nuclear factor kappa-B ligand (RANKL) is important substance during osteoclastogenesis that resulted in alveolar bone loss of periodontitis. MicroRNAs (miRNAs) regulate gene expression in several biological processes including osteoclastogenesis. We investigated the function of microRNA-302a-3p (miR-302a-3p) to regulate receptor activator of nuclear factor kappa-B ligand (RANKL) expression in human mandibular osteoblast-like cells (HMOBs). HMOBs were incubated with prostaglandin E2 (PGE2 ) to mimic inflammation, or with PGE2 and interferon gamma (IFNγ) to mimic homeostasis. MicroRNA (miRNA) profiles related to RANKL expression were demonstrated by PCR array, and miR-302a-3p was identified. Using TargetScanHuman 7.0, a target of miR-302a-3p was predicted. To confirm its function, miR-302a-3p was overexpressed, or silenced, by transfection with miR-302a-3p mimic, or inhibitor, respectively. Level of miR-302a-3p and RANKL mRNA was assessed by qRT-PCR. Soluble RANKL (sRANKL), and membrane-bound RANKL (mRANKL) were measured by ELISA and by Western blot, respectively. When PGE2 stimulated RANKL in HMOBs, miR-302a-3p was lower than baseline level. However, upregulation of miR-302a-3p is observed when IFNγ suppressed RANKL expression in PGE2 -stimulated HMOBs. miR-302a-3p was predicted to target PRKACB mRNA encoding the catalytic subunit in cAMP/PKA pathway. Overexpression of miR-302a-3p could decrease RANKL expression during PGE2 stimulation. In contrast, silencing of miR-302a-3p by its inhibitor increased RANKL expression in PGE2 -IFNγ conditioned HMOBs. miR-302a-3p regulates RANKL expression in HMOBs within PGE2 -IFNγ regulatory network.